1 Exercise 5.10.5 (a)

Proof:

(1) Show that $\int_{\mathbb{R}} F(x)F(dx) = 1/2$. Actually,

$$\begin{split} \int_{\mathbb{R}} F(x)F(dx) &= \int_{\mathbb{R}} \left[\int_{(-\infty,x]} F(dy) \right] F(dx) \\ &= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} 1_{(-\infty,x]}(y)F(dy) \right] F(dx) \\ (\text{by Fubini}) &= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} 1_{[y,\infty)}(x)F(dx) \right] F(dy) \\ (F \text{ is continuous}) &= \int_{\mathbb{R}} \left[1 - F(y) \right] F(dy) \\ &= \int_{\mathbb{R}} F(dy) - \int_{\mathbb{R}} F(y)F(dy) \\ &= 1 - \int_{\mathbb{R}} F(x)F(dx) \\ \implies 2 \int_{\mathbb{R}} F(x)F(dx) = 1 \\ \implies \int_{\mathbb{R}} F(x)F(dx) = \frac{1}{2} \end{split}$$

Note: An alternative proof is based on Exercise 3.4.5 on page 86.

$$X \sim F, \text{ which is continuous}$$

$$\implies Y = F(X) \sim \text{Uniform}[0, 1]$$

$$\implies \int_{\mathbb{R}} F(x)F(dx) = E[F(X)] = F[Y] = \frac{1}{2}$$

(2) Show that $P[X_1 \leq X_2] = 1/2$ if X_1, X_2 iid ~ F. Actually,

$$P[X_1 \le X_2] = \int_{\mathbb{R}^2} \mathbf{1}_{[x_1 \le x_2]}(x_1, x_2) d(F \times F)$$

(by Fubini)
$$= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \mathbf{1}_{(-\infty, x_2]}(x_1) F(dx_1) \right] F(dx_2)$$
$$= \int_{\mathbb{R}} F(x_2) F(dx_2)$$
(by (1))
$$= \frac{1}{2}$$

(3) Show that $E(F(X_1)) = 1/2$. Actually,

$$E(F(X_1)) = \int_{\mathbb{R}^2} F(x_1) d(F \times F)$$

(by Fubini) =
$$\int_{\mathbb{R}} \left[\int_{\mathbb{R}} F(x_1) F(dx_1) \right] F(dx_2)$$

(by (1)) = $\int_{\mathbb{R}} \frac{1}{2} F(dx_2)$
= $\frac{1}{2}$

2 Exercise 5.10.6 (a) (b) (d)

Proof: First note: since $X \in L_1$, that is, $E(|X|) < \infty$, then $|X| \in L_1$ and $P[|X| = \infty] = 0$. Otherwise, $P[|X| = \infty] > 0$ implies that $E(|X|) = \infty$.

(a) Based on the above, $\lim_{n\to\infty} \downarrow \{|X| > n\} = N$ with P(N) = 0. Hence we have

$$\lim_{n \to \infty} XI_{\{|X| > n\}} = 0 \quad \text{a.s.}$$

By Dominated Convergence Theorem,

$$\lim_{n \to \infty} \int_{\{|X| > n\}} X dP = \lim_{n \to \infty} \int_{\Omega} X I_{\{|X| > n\}} dP = 0.$$

(b) Decompose

$$\int_{A_n} |X| dP = \int_{A_n\{|X| \le M\}} |X| dP + \int_{A_n\{|X| > M\}} |X| dP = I_1 + I_2.$$

For any fixed $\varepsilon > 0$, by (a), we can choose M large enough such that $I_2 < \varepsilon$. With this fixed M, we look at I_2 . By monotonicity of integration, we have $I_2 < MP\{A_n\}$. Since $P\{A_n\} \to 0$, we know that for large enough n, we have $P\{A_n\} < \frac{\varepsilon}{M}$. This implied that when n large enough, we have $I_2 < \varepsilon$. Summing up, we conclude that for n large enough, we have

$$\int_{A_n} |X| dP < \varepsilon$$

for any fixed $\varepsilon > 0$. Since ε is arbitrary, we can conclude that

$$\lim_{n \to \infty} \int_{A_n} |X| dP = 0.$$

(d) Since $0 = Var(X) = E (X - E(X))^2 = \int_{\Omega} (X - E(X))^2 dP$, then by part (c),

$$0 = P\left(\Omega \cap \left[(X - E(X))^2 > 0 \right] \right) = P\left(\Omega \cap [X \neq E(X)] \right) = P\left[X \neq E(X) \right].$$

Thus P[X = E(X)] = 1 so that X is equal to the constant E(X) with probability 1. \Box

3 Exercise 5.10.15

(a) Proof:

$$0 \le nE\left(\frac{1}{X}1_{[X>n]}\right) = E\left(\frac{n}{X}1_{[X>n]}\right) \le E(1 \cdot 1_{[X>n]}) = P[X>n].$$

Since $P[0 \le X < \infty] = 1$, then

$$P[X > n] = P([X > n] \cap [0 \le X < \infty]) = P[n < X < \infty] \to 0$$

because $[n < X < \infty] \downarrow \emptyset$. Therefore,

$$\lim_{n \to \infty} nE\left(\frac{1}{X} \mathbb{1}_{[X > n]}\right) = 0$$

(b) Proof: First show that $\frac{1}{nX} \mathbb{1}_{[X > n^{-1}]} \to 0$ as n goes to ∞ . Actually, $\forall \omega \in \Omega$, if $X(\omega) > 0$, then $\frac{1}{nX(\omega)} \to 0$ as n goes to ∞ ; otherwise, $X(\omega) \leq 0$, then $\mathbb{1}_{[X > n^{-1}]}(\omega) = 0$ for each n.

On the other hand, $\left|\frac{1}{nX}1_{[X>n^{-1}]}\right| = \frac{1}{nX}1_{[nX>1]} \leq 1$. By DCT (Dominated Convergence Theorem on page 133), $E\left(\frac{1}{nX}1_{[X>n^{-1}]}\right) \to 0$ as n goes to ∞ . That is,

$$\lim_{n \to \infty} n^{-1} E\left(\frac{1}{X} \mathbb{1}_{[X > n^{-1}]}\right) = 0.$$

-	-	-	

4 Exercise 5.10.22

(a) **Proof:** Note that for a.e. $\omega \in \Omega$, we have $X(\omega) = X(\omega) - 0 = \int_{(0,X(\omega))} dt$. Hence

$$E(X) = \int_{\Omega} X(\omega) P(d\omega) = \int_{\Omega} \left(\int_{[0,X(\omega)]} dt \right) P(d\omega)$$

=
$$\int_{\Omega} \left(\int_{[0,\infty)} I_{[0,X(\omega)}(t) dt \right) P(d\omega) = \int_{[0,\infty)} \left(\int_{\Omega} I_{[0,X(\omega)]}(t) P(d\omega) \right) dt$$

=
$$\int_{[0,\infty)} P[X(\omega) > t] dt.$$

The proof is completed.

(b) The proof is similar to (a) once we note that $X^{\alpha}(\omega) = \alpha \int_{[0,X(\omega)]} t^{\alpha-1} dt$ for a.e. $\omega \in \Omega$.

5 Exercise 5.10.28

Proof: If

$$E\left(\vee_{n=1}^{\infty}|X_n|\right) < \infty$$

simply define $Y = \bigvee_{n=1}^{\infty} |X_n|$.

Conversely, if there is a random variable $0 \leq Y \in L^1$, such that

 $P[|X_n| \le Y] = 1,$

then

$$\vee_{n=1}^{\infty} |X_n| \le Y$$
 a.s..

Hence,

$$E\left(\vee_{n=1}^{\infty}|X_n|\right) \le EY < \infty.$$

The proof is completed.