
Stat 501 Hw12 Solutions

1 Exercise 5.10.5 (a)

Proof:
(1) Show that

∫
R F (x)F (dx) = 1/2. Actually,∫

R
F (x)F (dx) =

∫
R

[∫
(−∞,x]

F (dy)

]
F (dx)

=

∫
R

[∫
R

1(−∞,x](y)F (dy)

]
F (dx)

(by Fubini) =

∫
R

[∫
R

1[y,∞)(x)F (dx)

]
F (dy)

(F is continuous) =

∫
R

[1− F (y)]F (dy)

=

∫
R
F (dy)−

∫
R
F (y)F (dy)

= 1−
∫
R
F (x)F (dx)

=⇒ 2

∫
R
F (x)F (dx) = 1

=⇒
∫
R
F (x)F (dx) =

1

2

Note: An alternative proof is based on Exercise 3.4.5 on page 86.

X ∼ F, which is continuous

=⇒ Y = F (X) ∼ Uniform[0, 1]

=⇒
∫
R
F (x)F (dx) = E [F (X)] = F [Y ] =

1

2

(2) Show that P [X1 ≤ X2] = 1/2 if X1, X2 iid ∼ F . Actually,

P [X1 ≤ X2] =

∫
R2

1[x1≤x2](x1, x2)d(F × F )

(by Fubini) =

∫
R

[∫
R

1(−∞,x2](x1)F (dx1)

]
F (dx2)

=

∫
R
F (x2)F (dx2)

(by (1)) =
1

2

(3) Show that E (F (X1)) = 1/2. Actually,

E (F (X1)) =

∫
R2

F (x1)d(F × F )
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(by Fubini) =

∫
R

[∫
R
F (x1)F (dx1)

]
F (dx2)

(by (1)) =

∫
R

1

2
F (dx2)

=
1

2

�

2 Exercise 5.10.6 (a) (b) (d)

Proof: First note: since X ∈ L1, that is, E(|X|) <∞, then |X| ∈ L1 and P [|X| =∞] = 0.
Otherwise, P [|X| =∞] > 0 implies that E(|X|) =∞.

(a) Based on the above, limn→∞ ↓ {|X| > n} = N with P (N) = 0. Hence we have

lim
n→∞

XI{|X|>n} = 0 a.s.

By Dominated Convergence Theorem,

lim
n→∞

∫
{|X|>n}

XdP = lim
n→∞

∫
Ω

XI{|X|>n}dP = 0.

(b) Decompose∫
An

|X|dP =

∫
An{|X|≤M}

|X|dP +

∫
An{|X|>M}

|X|dP = I1 + I2.

For any fixed ε > 0, by (a), we can choose M large enough such that I2 < ε. With this
fixed M , we look at I2. By monotonicity of integration, we have I2 < MP{An}. Since
P{An} → 0, we know that for large enough n, we have P{An} < ε

M
. This implied that

when n large enough, we have I2 < ε. Summing up, we conclude that for n large enough,
we have ∫

An

|X|dP < ε

for any fixed ε > 0. Since ε is arbitrary, we can conclude that

lim
n→∞

∫
An

|X|dP = 0.

(d) Since 0 = Var(X) = E (X − E(X))2 =
∫

Ω
(X − E(X))2 dP , then by part (c),

0 = P
(
Ω ∩

[
(X − E(X))2 > 0

])
= P (Ω ∩ [X 6= E(X)]) = P [X 6= E(X)] .

Thus P [X = E(X)] = 1 so that X is equal to the constant E(X) with probability 1. �
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3 Exercise 5.10.15

(a) Proof:

0 ≤ nE

(
1

X
1[X>n]

)
= E

( n
X

1[X>n]

)
≤ E(1 · 1[X>n]) = P [X > n].

Since P [0 ≤ X <∞] = 1, then

P [X > n] = P ([X > n] ∩ [0 ≤ X <∞]) = P [n < X <∞]→ 0

because [n < X <∞] ↓ ∅. Therefore,

lim
n→∞

nE

(
1

X
1[X>n]

)
= 0.

�

(b) Proof: First show that 1
nX

1[X>n−1] → 0 as n goes to∞. Actually, ∀ω ∈ Ω, if X(ω) > 0,
then 1

nX(ω)
→ 0 as n goes to ∞; otherwise, X(ω) ≤ 0, then 1[X>n−1](ω) = 0 for each n.

On the other hand,
∣∣ 1
nX

1[X>n−1]

∣∣ = 1
nX

1[nX>1] ≤ 1. By DCT (Dominated Convergence
Theorem on page 133), E

(
1
nX

1[X>n−1]

)
→ 0 as n goes to ∞. That is,

lim
n→∞

n−1E

(
1

X
1[X>n−1]

)
= 0.

�

4 Exercise 5.10.22

(a) Proof: Note that for a.e. ω ∈ Ω, we have X(ω) = X(ω)− 0 =
∫

(0,X(ω)]
dt. Hence

E(X) =

∫
Ω

X(ω)P (dω) =

∫
Ω

(∫
[0,X(ω)]

dt

)
P (dω)

=

∫
Ω

(∫
[0,∞)

I[0,X(ω)(t)dt

)
P (dω) =

∫
[0,∞)

(∫
Ω

I[0,X(ω)](t)P (dω)

)
dt

=

∫
[0,∞)

P [X(ω) > t]dt.

The proof is completed.

(b) The proof is similar to (a) once we note that Xα(ω) = α
∫

[0,X(ω)]
tα−1dt for a.e. ω ∈ Ω.

5 Exercise 5.10.28

Proof: If
E (∨∞n=1|Xn|) <∞
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simply define Y = ∨∞n=1|Xn|.
Conversely, if there is a random variable 0 ≤ Y ∈ L1, such that

P [|Xn| ≤ Y ] = 1,

then
∨∞n=1|Xn| ≤ Y a.s..

Hence,
E (∨∞n=1|Xn|) ≤ EY <∞.

The proof is completed.
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